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The Longest Lasting Sandcastles

“The Longest Lasting Sandcastles"——2020 FEE AXFEHFEEZTE B &
“Build a Sandcastle to ‘Live in’ "——F4£iF, #kig@, MAE (87 8%)

® Background. People enjoy building spectacular sandcastles on the beach for fun. It arouses our interest that even if

experiencing roughly the same erosion from waves, tides and rains, some sandcastles lasts longer than others.
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The Longest Lasting Sandcastles

“The Longest Lasting Sandcastles"——2020 FEE AXFEHFEEZTE B &
“Build a Sandcastle to ‘Live in’ "——F4£iF, #kig@, MAE (87 8%)

® Background. People enjoy building spectacular sandcastles on the beach for fun. It arouses our interest that even if

experiencing roughly the same erosion from waves, tides and rains, some sandcastles lasts longer than others.

® Problems.

@ Construct a mathematical model to identify the best 3-dimensional geometric shape to use as a sandcastle
foundation that will last the longest period of time on a seashore that experiences waves and tides under the
following conditions: (i) at the same distance from the water on the same beach, (ii) using the same amount of
sand and water-to-sand proportion.

@ Using your model, determine an optimal sand-to-water mixture proportion for the castle foundation.

© Adjust your model as needed to determine how the best 3-dimensional sandcastle foundation you identified in
the first problem is affected by rain, and whether it remains the best 3-dimensional geometric shape to be used

as a castle foundation when it is raining.
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The Longest Lasting Sandcastles

Problem 1. Static Model for Scouring from Waves and Tides
® Step |. Simplification. We neglect the deformation of the foundation. Therefore, the shape is the best if and only

if it minimizes the erosion on the foundation from waves and tides in one cycle. Let the shape be
u: Q CR?* =R, and ue C(Q)NCHQ - {0}).
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The Longest Lasting Sandcastles

Problem 1. Static Model for Scouring from Waves and Tides

® Step |. Simplification. We neglect the deformation of the foundation. Therefore, the shape is the best if and only
if it minimizes the erosion on the foundation from waves and tides in one cycle. Let the shape be
u: Q CR?* =R, and ue C(Q)NCHQ - {0}).

e Step Il. Quantify Erosion.

® Part I. Horizontal Scouring by Waves. The steeper, the more unstable; the scouring of waves decreases slower
with the increase of height. So we consider I (u) := [, e U@ || Vu(x) | dz (weighted TV-norm).
® Part Il. Complete Soaking in Tides. The larger surface tends to accelerate the exchange between water and

sand, causing greater destruction to the foundation. So we consider I>(u) := [, \/1 + || Vu(x)||*dz.
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The Longest Lasting Sandcastles

Problem 1. Static Model for Scouring from Waves and Tides

® Step |. Simplification. We neglect the deformation of the foundation. Therefore, the shape is the best if and only
if it minimizes the erosion on the foundation from waves and tides in one cycle. Let the shape be
u: Q CR?* =R, and ue C(Q)NCHQ - {0}).
e Step Il. Quantify Erosion.
® Part I. Horizontal Scouring by Waves. The steeper, the more unstable; the scouring of waves decreases slower

with the increase of height. So we consider I (u) := [, e U@ || Vu(x) | dz (weighted TV-norm).
® Part Il. Complete Soaking in Tides. The larger surface tends to accelerate the exchange between water and

sand, causing greater destruction to the foundation. So we consider I>(u) := [, \/1 + || Vu(x)||*dz.

e Step Ill. The constrained dynamic optimization problem.

Tgl c I(u) = /Q <ae_” IVul| + B84/1+ HVU(GJ)HQ) dz

s.t. / w(x)de =V, ulon = 0.
Q
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The Longest Lasting Sandcastles

Problem 1. Static Model for Scouring from Waves and Tides

® Step IV. Solve the OPT problem in Step Il by Variational method.

® Simplification. Symmetry and Polar Decomposition.

® The 2d problem.
R
0

R
min I(u(r),R) = 27r/ (ae"“lu’l +68v1+ |u’|2)r dr = 27r/ F(r,u,u)dr
u, 0

o {IOR u(r)rdr =

v (©)
ul,—r = 0 = ¢(R)

® Analytic Solution through Variational Method. Combining the Constrained Conditions, its Euler-Lagrange
Equation, and its Transversality Condition, we can obtain the final ODE:

' (1+u'?) a —u 12\3/2 ,/
— T Lol 4w o' <0
W' = { r Br ( ) 6)

' (1+u'? —
_u( : ) /%e “(1+u’2)3/2,u’ >0
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The Longest Lasting Sandcastles

Problem 3. Diffusion-based Model for Erosion by Seawater and Rain

e Step l. Simplification. Symmetry, 3d—2d.

e Step Il. Diffusion PDE.
® Let S(z,y,t) be the concentration of the sand at the point (z, y) on the vertical plane at time ¢.
® Diffusion Law: Q@ = —DV S, where @ is the flow velocity; D is the diffusion coefficient.
® Establish the Equation of Transfer of Sand.

(Slisae = 1) Acy = (alo — aloras) AyAt+ (gl — dlyray) Axrt

After substituting and rearranging the equation, we have the general equ {

5= -(09) + 5 (05) + 3= ) “

F,(z,y) € 92N {y =0}

S — K05
oS = o)y on =

m(ENZ )
m(T)
y

e Step Ill. Area-Based Evaluation Index P :=

wENE,)
)

a o b

P

® Step IV. Compare some shapes by P.
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Section 2. Some Progress on Machine Learning Theory



Introduction to Supervised Learning

® In supervised learning, we are given n training data S = {(=;, y;) };—; drawn i.i.d. from unknown distribution D.
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Introduction to Supervised Learning

® In supervised learning, we are given n training data S = {(=;, y;) };—; drawn i.i.d. from unknown distribution D.

® We aim to minimize the population risk (PRM):

Inin : Lp(0) = E(gyy~p[L(y; (5 0))],

® /(-;-) is loss function, such as square loss £(y1, y2) = (y1 — y2)?/2, logistic loss
£(y1,y2) = log(1 4 exp(—y1y2)), and cross-entropy loss.

® f(-;0): R? — R is the prediction model parameterized by 8 € R”, such as linear model f(z;0) = 0" z and
deep fully-connected neural networks (FCN) f(z; 0) = o(Wr o (- - - (o( W' a)))).
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® In supervised learning, we are given n training data S = {(=;, y;) };—; drawn i.i.d. from unknown distribution D.

® We aim to minimize the population risk (PRM):

Inin : Lp(0) = E(gyy~p[L(y; (5 0))],

® /(-;-) is loss function, such as square loss £(y1, y2) = (y1 — y2)?/2, logistic loss
£(y1,y2) = log(1 4 exp(—y1y2)), and cross-entropy loss.

® f(-;0): R? — R is the prediction model parameterized by 8 € R”, such as linear model f(z;0) = 0" z and
deep fully-connected neural networks (FCN) f(z; 0) = o(Wr o (- - - (o( W' a)))).

® However, we can only minimize the empirical risk (ERM) on the training dataset S:

min : L5(0) = %Zf(yl,f(%e))
i=1

6 cRr
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Introduction to Supervised Learning

® In supervised learning, we are given n training data S = {(=;, y;) };—; drawn i.i.d. from unknown distribution D.
® We aim to minimize the population risk (PRM):

Inin : Lp(0) = E(gyy~p[L(y; (5 0))],

® /(-;-) is loss function, such as square loss £(y1, y2) = (y1 — y2)?/2, logistic loss

£(y1,y2) = log(1l + exp(—y1y2)), and cross-entropy loss.
® f(-;0) : RY = R is the prediction model parameterized by 8 € R?, such as linear model f(x; 8) = 6 " z and
deep fully-connected neural networks (FCN) f(z; 0) = o(Wr o (- - - (o( W' a)))).

® However, we can only minimize the empirical risk (ERM) on the training dataset S:

mln : Ls(0) = Zf(yiéf(mﬁ 9))
'L':l

IS

through some optimization algorithms, such as (Stochastic) Gradient Descent with random initialization:

GD: O(t+1) = H(t) — . VLs(6(D),

SGD: 6(t+1) = 6(1) — & > Ve(f(i 6(1)), o),
LEB,
where By = {~¢,1, -+ ,vt,B} is a batch, and v¢,1,- -+ , V4,8 ikg- U([n]) and are independent with O(t).
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Introduction to Machine Learning Theory

Two Main Problems in Supervised Learning.

® QOptimization. Can we use some Optimization Algorithms such as Gradient Descent to find the global

minimum 6* of empirical risk Ls(0)? i.e. find 8* = arg mingerr Ls(0).
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® Generalization. Does the global minimum 6" of Ls(0) (found by some optimization algorithms) have
small population risk? i.e. small Lp(6%)
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Introduction to Machine Learning Theory

Two Main Problems in Supervised Learning.

® QOptimization. Can we use some Optimization Algorithms such as Gradient Descent to find the global

minimum 6* of empirical risk Ls(0)? i.e. find 8* = arg mingerr Ls(0).

® Generalization. Does the global minimum 6" of Ls(0) (found by some optimization algorithms) have
small population risk? i.e. small Lp(6%)

Machine Learning Theory = Approximation + Optimization + Generalization.

We mainly focus on Deep Learning Theory, which means the prediction models f(-; 8) are Neural Networks.
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Optimization Dynamics of Training Neural Networks

® Some Progress on Machine Learning Theory
m Optimization Dynamics of Training Neural Networks
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Theoretical Challenge in Optimization

Theoretical Challenge in Optimization. In this part, we denote £(0) := Ls(6).
® Fact: Training Neural Networks is Non-convex Non-smooth Optimization problem!
® Theoretical Side: Even finding a local minimum is NP-hard!

® Practical observation: Gradient-based optimization methods often find high quality solutions.
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Theoretical Challenge in Optimization

Theoretical Challenge in Optimization. In this part, we denote £(0) := Ls(0).
® Fact: Training Neural Networks is Non-convex Non-smooth Optimization problem!
® Theoretical Side: Even finding a local minimum is NP-hard!
® Practical observation: Gradient-based optimization methods often find high quality solutions.

Previous Theoretical Results: Highly over-parameterized regime

Theorem (Neual Tanget Kernel Theory (Du et. al, 2018))

Let the parameters of NNs 6(¢) be trained by Gradient Descent started with random initialization. If the network
width is large enough m > poly(n, 1/Xg - - - ), then with high probability, £(0(t)) < (1 — nXo)"L(6(0)).
® Good News. Global exponential convergence.

® Bad News. In this regime, (1) the network width is not practical; (2) the network is close to a kernel

method (linear model); (3) the optimization problem is nearly convex; (4) converged solution is no better
than that of kernel method.
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Gap between highly over-parameterized and practical-size NNs

Highly over-parameterized NNs =~ Kernel methods # Practical-size NNs.

® Highly over-parameterized NNs keep close to kernel methods (lazy training)
fl®;0(1)) = f(x;0(0)) + (Vf(z;6(0)), 6(1) — 6(0)) .
® However, NNs have obvious superiorities to kernel methods to learn even a single ReLU neuron
min : £(0) = By | (f0) ~ ReLU(w" T2+ 57)) .

Theorem (Shamir et. al, 2018, 2019)

@ NNs with even one neuron can learn single neuron efficiently at a linear rate.
@® Random features suffer from the “curse of dimensionality?”, i.e. they fail unless the network size is

exponentially large Q(e?) with respect to the input dimension d.
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Optimization theory for practical-size NNs!

General Non-convex Optimization is NP-hard. However,

Phenomenon. Fast decreasing of the loss value always happens, at least in the early stage of training.
® |t is common that the loss experiences a drastic decreasing at the beginning of the training.

® In many cases, this decrease of loss even continues until the loss achieves 0, i.e. the optimization

algorithm fully converges.

1Mingze Wang and Chao Ma. “Early Stage Convergence and Global Convergence of Training Mildly Parameterized Neural Networks”. In: NeurlPS (2022).
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Optimization theory for practical-size NNs!

General Non-convex Optimization is NP-hard. However,

Phenomenon. Fast decreasing of the loss value always happens, at least in the early stage of training.
® |t is common that the loss experiences a drastic decreasing at the beginning of the training.
® In many cases, this decrease of loss even continues until the loss achieves 0, i.e. the optimization
algorithm fully converges.
Theoretical Problems. When we train practical-size (mildly parameterized) NNs by GD or SGD,

@ Does the fast convergence in the early stage of the training provably exist? If so, how long will the
phenomenon last and how much will loss descend in the early stage?

@ Can the global convergence be proved under some special conditions on loss function and training data?

1Mingze Wang and Chao Ma. “Early Stage Convergence and Global Convergence of Training Mildly Parameterized Neural Networks”. In: NeurlPS (2022).
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® Loss: a large number of loss functions, such as quadratic loss, exponential-type loss and hinge-loss.
® Data: ||z|| < 1 and there exists s > —1 s.t. (x;, ;) > s for any ¢, j € [n]. It holds for normalized image datasets
such as MNIST and CIFAR-10.
Theorem (Early Stage Convergence of Training Mildly Parameterized NNs)
Let 6(t) be the parameters of two-layer ReLU NNs trained by GD or SGD. If the width m = Q(logn) (mildly
parameterized), the input dimension d = Q(log m), and the learning rate n, = n < 1, then with high probability, the

loss will descend Q(1) in 7= ©(;) iterations.

® Loss: Exponential-type loss, such as exponential, logistic and cross-entropy loss.
® Data: niseven. y; = 1fori € [n/2]; y; = —1 for i € [n] — [n/2]. @, 2; > O for i, in the same class; x; z; < O for

i, 7 in different classes.

Theorem (Global Convergence of Training Mildly Parameterized NNs)

@ Let 0(t) be the parameters of two-layer ReLU NNs trained by GD starting from random initialization. Let the

width m = Q(log n) and the input dimension d = Q(log m). Then, with adaptive learning rate, with high
probability, GD will converge at arbitrary polynomial rate r > 0: £(6(t)) = O(l/tT),

t—1
@ If only the first layer be trained, GD will converge at exponential rate: £(8(t)) < (1 — %) log 2.
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Optimization Dynamics and Comparison

Optimization Dynamics. The loss landscape may be complicated near the random initialization. However,

® Stage | (Feature Learning). Neurons will adjust directions rapidly, and the iterator will enter a good region which

contains neither spurious local minima nor saddle points.

® Stage Il (Lazy Training). Then, neurons will keep going towards the right directions for a period of time, during

which process the loss will descend fast and significantly.

We provide detailed theorems, explanations, and proofs (73 pages). Please refer to our paper? for details.

Comparison with highly over-parameterized NNs.

mildly parameterized NNs

highly over-parameterized NNs

network width m

Q(log n) (practical-size)

Q(poly(n, 1/Xo))

model

highly non-linear

nearly linear

convexity

highly non-convex

nearly convex

training dynamics

feature learning

lazy training

2l\/Hngze Wang and Chao Ma. “Early Stage Convergence and Global Convergence of Training Mildly Parameterized Neural Networks”. In: NeurlPS (2022).
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Optimization dynamics of training DNNs

A crucial theoretical topic: understanding the optimization dynamics of training DNNs.
® Most previous works focus on:

® either local analysis, like the initial/end of training;

® or approximate linear models, like Neural Tangent Kernel.
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Optimization dynamics of training DNNs

A crucial theoretical topic: understanding the optimization dynamics of training DNNs.

® Most previous works focus on:

® either local analysis, like the initial/end of training;

® or approximate linear models, like Neural Tangent Kernel.

® However, the training of practical networks can exhibit plenty of nonlinear behaviors:

® |Initial training: initial condensation, i.e., neurons condense onto a few isolated orientations.
® End of training: for exp-tailed loss (classification), NNs directionally converge to KKT points of some
constrained problem. However, determining which KKT point (not unique) GD converges to is challenging.
® Nonlinear training behaviors besides initial and terminating stages of optimization are also numerous:
® Saddle-to-saddle dynamics: for square loss, GD traverses a sequence of saddles during training. But it is
unclear whether similar behavior can occur for classification tasks using exp-tailed loss.
® Changes of activation patterns. For ReLU nets, most activation patterns I{w & > 0} do not change
during training in lazy regime, it remains uncertain how patterns evolve beyond lazy regime.
® Learning of increasing complexity, also known as simplifying-to-complicating or frequency-principle has
yet to be proven.
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Optimization Dynamics of Training Neural Networks

Our first work (Wang and Ma (NeurlPS 2022)) explores the complete dynamics on classifying orthogonally separable data.
However,

® this data is easy to learn, and all the features can be learned rapidly (accuracy=100%) in initial training, followed by
lazy training (activation patterns do not change).
® Unfortunately, this simplicity does not hold true for actual tasks on much more complex data, and NNs can only learn

some features in initial training, which complicates the overall learning process.

3l\/Iingze Wang and Chao Ma. “Understanding Multi-phase Optimization Dynamics and Rich Nonlinear Behaviors of ReLU Networks”. In: arXiv preprint
arXiv:2305.12467 (2023).
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Optimization Dynamics of Training Neural Networks

Our first work (Wang and Ma (NeurlPS 2022)) explores the complete dynamics on classifying orthogonally separable data.
However,

® this data is easy to learn, and all the features can be learned rapidly (accuracy=100%) in initial training, followed by
lazy training (activation patterns do not change).

® Unfortunately, this simplicity does not hold true for actual tasks on much more complex data, and NNs can only learn

some features in initial training, which complicates the overall learning process.

In this work (Wang and Ma (2023))3, we make an attempt to theoretically describe the whole neural network training
dynamics beyond the linear regime, in a setting that many nonlinear behaviors manifest.

® We analyze the training process of a two-layer ReLU net trained by GF on a linearly separable data.

® Qur analysis captures the whole optimization process starting from random initialization to final convergence.

® Despite the relatively simple model and data that we studied, we reveal multiple phases in training process, and show

a general simplifying-to-complicating learning trend by detailed analysis of each phase.

3l\/Hngze Wang and Chao Ma. “Understanding Multi-phase Optimization Dynamics and Rich Nonlinear Behaviors of ReLU Networks". In: arXiv preprint
arXiv:2305.12467 (2023).
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Optimization Dynamics of Training Neural Networks

Specifically, in this work (Wang and Ma (2023)), by our meticulous theoretical analysis of the whole training
process, we precisely identify four different phases that exhibit numerous nonlinear behaviors.

® In Phase I, initial condensation and simplification occur as living neurons rapidly condense in two

different directions. Meanwhile, GF escapes from the saddle around initialization.

® In Phase Il, GF gets stuck into the plateau of training accuracy for a long time, then escapes. The first

two phases exhibit a saddle-to-plateau dynamics.

® In Phase Ill, a significant number of neurons are deactivated, leading to self-simplification of the

network, then GF tries to learn using the almost simplest network.

® In Phase |V, a considerable number of neurons are reactivated, causing self-complication of the network.

Finally, GF converges towards an initialization-dependent direction.

® Overall, the whole training process exhibits a remarkable simplifying-to-complicating learning trend.
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A Brief Overview of four-phase Optimization

In this work, we present a meticulously detailed and comprehensive depiction of the whole optimization dynamics and

nonlinear behaviors. First. we displav the timeline of our dvnamics and some nonlinear behaviors.

1
o0 W2 o Ol o Ohm) e (TOANTH g4
 Phasel | Phase IT | Phasemm | Phaerv |
b t : t t >
0 Tr Tpiat T T oo t

Fig: Timeline of the four-phase optimization dynamics, containing some key time points T, Ti1, Trir, Tplac and their theoretical estimates, and
some basic nonlinear behaviors: @ initial condensation, @ saddle escape, ® getting stuck in plateau, @ plateau escape, ® neuron deactivation, ®
neuron reactivation, @ initialization-dependent directional convergence. Notice ®~@ are only some basic nonlinear behaviors. Moreover, @+® is

saddle-to-plateau, ®+®+® is simplifying-to-complicating.

We provide detailed theorems, explanations, and proofs (88 pages). Please refer to our paper® for details.

4Mingze Wang and Chao Ma. “Understanding Multi-phase Optimization Dynamics and Rich Nonlinear Behaviors of ReLU Networks”. In: arXiv preprint
arXiv:2305.12467 (2023).
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Implicit Bias of Stochastic Gradient Descent

® Some Progress on Machine Learning Theory

m Implicit Bias/Regularization of Stochastic Gradient Descent
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Introduction to Implicit Bias/Regularization

® Modern neural networks are usually over-parameterized, i.e. p > n, where p is the dimension of 8 and n is the
sample size.
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® Modern neural networks are usually over-parameterized, i.e. p > n, where p is the dimension of 8 and n is the
sample size.

® There are plenty of global minima 8* of Ls(0), all of which have zero training loss (Ls(0%) = 0) but their test
performance can be significantly different (different L5 (6™)).

® To get good generalization, one may think that we must rely on some explicit regularization tricks, such as Weight
Decay, Data Augmentation, Dropout, Batch Normalization, etc.

® Surprisingly, practitioners often find that optimizers (such as SGD) can find good solutions (Lp(0™) is small)

without the need of any explicit regularization.

Implicit Bias:

Without any explicit regularization tricks, optimizers converges to generalizable global minima!
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Introduction to Implicit Bias/Regularization

g
e
3 o= test(w/ aug, wd, dropout)
S04 > train(w/ aug, wd, dropout)
o= test(w/o aug, dropout)
»-%  train(w/o aug, dropout)
02 [ test(w/o aug, wd, dropout)
train(w/o aug, wd, dropout)
0.0,
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thousand training steps

(a) Inception on ImageNet
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test(Inception)
« train(inception)
= test(Inception w/o BN)
train(Inception w/o BN)
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thousand training steps

(b) Inception on CIFAR10
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3

0.6

Fig: Effect of implicit regularization (in Zhang et al, ICLR 2017)

® For CIFAR10 (Fig (b)), the implicit regularizations account for 85%+ accuracy. Explicit regularizations only improve

less than 5% accuracy.

® In ImageNet (Fig (a)), explicit regularizations are more important, but still not as crucial as the implicit bias.
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Introduction to Implicit Bias/Regularization

0.9

o
©

o= test(w/ aug, wd, dropout)
0.4 train(w/ aug, wd, dropout)
o= test(w/o aug, dropout)
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(a) Inception on ImageNet (b) Inception on CIFAR10

Fig: Effect of implicit regularization (in Zhang et al, ICLR 2017)

® For CIFAR10 (Fig (b)), the implicit regularizations account for 85%+ accuracy. Explicit regularizations only improve
less than 5% accuracy.

® In ImageNet (Fig (a)), explicit regularizations are more important, but still not as crucial as the implicit bias.

Implicit Bias: Without any explicit regularization tricks, optimizers converges to generalizable global minima!

® We focus on the implicit bias of Stochastic Gradient Descent (SGD).
® There are some main factors that effect the implicit bias: network structure; initialization scale; learning

rate 1 and batch size B; structure of SGD noise; direction of gradient.
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What Solutions Generalize Well

Test loss
Train loss /
Famous Flatness Hypothesis: Flatter minima generalize better. (1997)
Flat Sharp
minimum minimum
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What Solutions Generalize Well

Test loss
Train loss /
Famous Flatness Hypothesis: Flatter minima generalize better. (1997)
Flat Sharp
minimum minimum

SGD — flat minima — generalize better

@ Why SGD finds flat minima?

@ Why flat minima generalize better? Flatness-based generalization error bounds.
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Introduction to SGD Noise

® Consider the training set {(;, i)}y C R? X R. Let f(-;0) : R — R be the model parameterized by 8 € R?. Let
£;(8) = L (f(z:;0) — ;) be the squared loss at the i-th sample and £(0) = L3577 1 £:(0) be the empirical risk.
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® Consider the training set {(;, i)}y C R? X R. Let f(-;0) : R — R be the model parameterized by 8 € R?. Let
£;(8) = L (f(z:;0) — ;) be the squared loss at the i-th sample and £(8) = 1 5°" | £,(8) be the empirical risk.

n

® SGD can be rewritten as GD+noise:

0(t+1) =6(t) — % D VL6(t) = (1) — n (VLO(D) + £(1)
i€ By

where &, is the noise, satisfying E[£,] = O and E[£,£,” ] = (0,)/B. Here the noise covariance

2(0) = ! an Ve(0)VE(0) —VL(O)VLO)T.
n i=1
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Introduction to SGD Noise

® Consider the training set {(;, i)}y C R? X R. Let f(-;0) : R — R be the model parameterized by 8 € R?. Let
£;(8) = L (f(z:;0) — ;) be the squared loss at the i-th sample and £(8) = 1 5°" | £,(8) be the empirical risk.

n

® SGD can be rewritten as GD+noise:

0(t+1) =6(t) — % D VL6(t) = (1) — n (VLO(D) + £(1)
i€ By

where &, is the noise, satisfying E[£,] = O and E[£,£,” ] = (0,)/B. Here the noise covariance

2(0) = ! an Ve(0)VE(0) —VL(O)VLO)T.
n i=1

® The Hessian and Gram matrix of the loss landscape can be written as
1 n 1 n
H(0) = G(0) + — > (f(x::0) — i) V> f(25;0), G(0) =~ Vf(x:;0)V/(:50) .
i=1 i=1

When the fit errors are small, we have G(0) ~ H(0) and in particular, if £L(0*) = 0, then H(0") = G(0™).
Additionally, for linear regression f(x;0) = "z, H= G = iy T, .
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Noise Geometry

® Decoupling approximation. An intuitive approximation:
n

2(0) = 1 D (i0) ~ v VHOVO)T ~ 2£(0)5(0).

i=1

This approximation cannot be true in general but tells us two critical properties of SGD noise:

® The noise magnitude is proportional to the loss value.

® The noise covariance aligns with the Gram matrix.

5Lei Wu, Mingze Wang, and Weijie Su. “The alignment property of SGD noise and how it helps select flat minima: A stability analysis”. In: NeurlPS (2022).

6Mingze Wang and Lei Wu. “The Noise Geometry of Stochastic Gradient Descent: A Quantitative and Analytical Characterization”. In: under review (2023).
43 /52



Noise Geometry

® Decoupling approximation. An intuitive approximation:
n

2(0) = 1 D (i0) ~ v VHOVO)T ~ 2£(0)5(0).

i=1

This approximation cannot be true in general but tells us two critical properties of SGD noise:
® The noise magnitude is proportional to the loss value.
® The noise covariance aligns with the Gram matrix.
In our works®®, we provide theoretical explanations and quantitative characterizations of how SGD noise aligns with local
loss landscape. Moreover, we apply our noise geometry results to investigate how SGD escapes from minima.
® Weak Alignment: The noise covariance X aligns with the local landscape G in an average sense.
® Strong Alignment (directional alignment): the component of noise energy along any direction is proportional to that

direction’s sharpness.

5Lei Wu, Mingze Wang, and Weijie Su. “The alignment property of SGD noise and how it helps select flat minima: A stability analysis”. In: NeurlPS (2022).

6Mingze Wang and Lei Wu. “The Noise Geometry of Stochastic Gradient Descent: A Quantitative and Analytical Characterization”. In: under review (2023).
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Flat Minima Selection

Q: What is the role of this alignment structure of SGD noise?

A: It helps SGD select flat minimal!
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Flat Minima Selection

Q: What is the role of this alignment structure of SGD noise?
A: It helps SGD select flat minimal!

By establishing Linear Stability Analysis, we prove that:

® Size-independent Flatness Bound of SGD'’s solutions: HVQE(O*)H < %,/%, where B is the batch size, 7

is the learning rate, and po reflects how SGD noise aligns with the loss landscape.

® SGD escapes from sharp minima exponentially fast.
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Designing Algorithms Inspired by Theory

® Some Progress on Machine Learning Theory

B Designing Algorithms Inspired by Theory
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Previous Algorithms inspired by Theory

Regression Task.
® Flatness. Flatter minima generalize better.
® Theory. Flatness-based generalization error bounds.

® Algorithms. Such as Sharpness-aware Minimization (SAM).

Test loss

\7 /

Flat Sharp
minimum minimum

min : max £(0 +€) ~ L£(0) + VLO) e+ %ETV2E(0)€.

6eR? " e[| <5
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Previous Algorithms inspired by Theory

Regression Task.

Test loss

® Flatness. Flatter minima generalize better. e /
® Theory. Flatness-based generalization error bounds. :

® Algorithms. Such as Sharpness-aware Minimization (SAM). Flat sharp

minimum minimum

. -~ TR g
min : ”r?”aés L(O+¢€)~L(O)+VLEO) e+ 3¢ V°L(O)e.

Classification Task.

® Margin. v(0) := qmin(ﬁ), where gmin(0) = 5161[13 yif(x;; @) (binary classification y; € {£1}).

Support vectors

® Theory. Margin-based generalization error bounds.

® Algorithms. Large-margin Learning, such as

. A
min : L(0) + @)
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Faster Margin Maximization for Logistic Regression
Problem Settings

® Given a dataset S = {(z1,%1)," " , (®n, Yn) }imy C R? x {£1}. WLOG, we assume ||z, < 1 for any i.

® Linearly Separable. The margin of the dataset v* = max min y; (w, ;) > 0.
weSd—1 i€(n]

® Logistic Regression.

min L(w) = % Z log (1 4 exp (—yi (w, z:))) -

weR?
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Faster Margin Maximization for Logistic Regression
Problem Settings

® Given a dataset S = {(z1,%1)," " , (®n, Yn) }imy C R? x {£1}. WLOG, we assume ||z, < 1 for any i.

Linearly Separable. The margin of the dataset v* = max min y; (w, x;) > 0.
wesSd—1 i€[n]

® Logistic Regression.

min L(w) = % Z log (1 4 exp (—yi (w, z:))) -

weR?

® Vanilla Gradient Desecnt (GD) and Normalized Gradient Descent (NGD)

GD: w(t+1) = w(t) — nVL(w(t)),
NGD: w(t+1) = w(t) — nvéi:(]g;)

® Margin of w. y(w) := mﬂ Yi <T:”»$1>
i€[n
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Faster Margin Maximization for Logistic Regression
Theory

Theorem (Soudry, 2018)

For GD starting form any w(0) € R? with constant 7, we have v* — ~v(w(t)) = O (@)

7Mingze Wang. “Maximize Margin Nearly Exponentially Fast by First-order Optimization Method”. In: preparing (2023).
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Faster Margin Maximization for Logistic Regression

Theory

Theorem (Soudry, 2018)

For GD starting form any w(0) € R? with constant 7, we have v* — v(w(t)) = O (ﬁgt)

Work Algorithm Convergence Rate of Margin Maximization
(Soudry, 2018) GD (ﬁgt)
(Nacson, 2019) NGD o (#)
(Ji, 2021) NGD o}
(Ji, 2022) Dual Momentum GD O (%) (SOTA)

7Mingze Wang. “Maximize Margin Nearly Exponentially Fast by First-order Optimization Method”. In: preparing (2023).
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Faster Margin Maximization for Logistic Regression
Theory

Theorem (Soudry, 2018)

For GD starting form any w(0) € R? with constant 7, we have v* — v(w(t)) = O (ﬁgt)

Work Algorithm Convergence Rate of Margin Maximization
(Soudry, 2018) GD o (ﬁgt)
(Nacson, 2019) NGD o (#)
(Ji, 2021) NGD o}
(Ji, 2022) Dual Momentum GD (%) SOTA)

Can we achieve margin maximization beyond polynomial rate by first-order methods?

Work Algorithm Convergence Rate of Margin Maximization
This Work” | Progressive Projected GD O (&) 7

7Mingze Wang. “Maximize Margin Nearly Exponentially Fast by First-order Optimization Method”. In: preparing (2023).
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Faster Margin Maximization for Logistic Regression

Experiments

Choose the same n = 1 in these algorithms.
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Margin Maximization Rate
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Faster Margin Maximization for Logistic Regression

Key
[ ]
[ ]

The

Observation.

Homogeneity: w and cw (¢ > 0) have the same margin v(cw) = vy(w).

The convexity of the problem is stronger where ||w|| is small.
The directional OPT at 100w is more efficient than w: smaller arg (—V L(-), w™).
Regularized path wy,,(B) with larger B is closer to the max-margin direction.

Regularized path wy,, (B) := argmin £(w) is closer to w™ than NGD path in Figure in (Ji, 2020)
llwll,<B

intuition of acceleration.
||wl|| should be stretched to oo to ensure (i) correct directional convergence to w*, (ii) more efficient directional opt.
With small ||w]||, the local opt is faster due to stronger convexity;

Small-Large norm trade-off.
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